Tom Womack & APOS; pagine s affrontare molti argomenti curva ellittica, tra le curve di data rango e piccolo conduttore, curve Mordell di grande rango, e gruppi di torsione interessanti.
Un corso da Jerrold Tunnell. Un'introduzione ai punti razionali su curve ellittiche attraverso esempi.
Illustra la differenza tra una curva ellittica e un'ellisse. Discute i campi, le applicazioni, la scelta di un punto fisso, e argomenti correlati.
Una vasta collezione di note soluzioni intere curve ellittiche e le loro corrispondenti equazione diofantea, presentati da Hisanori Mishima.
Due tabelle: il conduttore più piccolo osservato per un certo rango e torsione, e il direttore d'orchestra più piccola osservate tra le curve di rango pari a zero con una data Sha e torsione. Gestito da Tom Womack.
Il rango più elevato attualmente noto per una curva ellittica su Q con ciascuno dei possibili gruppi di torsione. Compilato da Andrej Dujella.
Minimal noto k positivo e negativo per le curve Mordell (y ^ 2 = x ^ 3 + k), dato rango, da Tom Womack.
Per ogni curva (etichettato come a Cremona), il mu e lambda-invarianti sono elencati per i numeri primi tra 2 e 17. Con Robert Pollack.
Tabelle di curve ellittiche di piccolo conduttore in formato Mathematica.
Tabulati da Stefan Lemurell.
Documenti e le indagini di Ed Schaefer.
Include Primo, un'implementazione di ECPP, e CPG, classe costruttore polinomiale.
Germania. Produce materiale piatto piegatura e punzonatura macchine, con particolare applicazione al trattamento dei quadri di controllo e quadri elettrici. Attrezzature disponibili anche per realizzare serramenti.
Cina. Fabbrica varietà di presse idrauliche per operazioni come il taglio, la formazione, stretching, e punzonatura. Inoltre produce gamma di attrezzature di temperatura e calzatura costante.
Produttore di attrezzature utilizzate per la punzonatura fori in dischi ottici, CVD, e DVD. Costituita da macchine automatiche e manuali per la finitura posteriore, ID / OD punzonatura, e multi-ID punzonatura.
Il Progetto ECMNET per trovare grandi fattori da parte della curva ellittica Metodo, principalmente numeri Cunningham.
Dispense da un seminario J. Lubin, J.-P. Serre e J. Tate.
Elliptic Curve Progetto logaritmi discreti. Hanno risolto ECC2K-108 nel mese di aprile 2000. Storia e documenti correlati.
Da un corso sulle forme modulari.
Include errata per i suoi libri punti razionali sulle curve ellittiche e temi avanzati in L'aritmetica della ellittico Curve.